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Abstract. Most of the computational study of election problems has
assumed that each voter’s preferences are, or should be extended to, a
total order. However in practice voters may have preferences with ties.
We study the complexity of manipulative actions on elections where vot-
ers can have ties, extending the definitions of the election systems (when
necessary) to handle voters with ties. We show that for natural election
systems allowing ties can both increase and decrease the complexity of
manipulation and bribery, and we state a general result on the effect of
voters with ties on the complexity of control.

1 Introduction

Elections are commonly used to reach a decision when presented with the pref-
erences of several agents. This includes political domains as well as multiagent
systems. In an election agents can have an incentive to cast a strategic vote in
order to affect the outcome. An important negative result from social-choice the-
ory, the Gibbard-Satterthwaithe theorem, states that every reasonable election
system is susceptible to strategic voting (a.k.a. manipulation) [16,26].

Although every reasonable election system can be manipulated, it may be
computationally infeasible to determine if a successful manipulation exists.
Bartholdi et al. introduced the notion of exploring the computational complex-
ity of the manipulation problem [1]. They expanded on this work by introducing
and analyzing the complexity of control [2]. Control models the actions of an
election organizer, referred to as the chair, who has control over the structure
of the election (e.g., the voters) and wants to ensure that a preferred candidate
wins. Faliszewski et al. introduced the model of bribery [9]. Bribery is closely
related to manipulation, but instead of asking if voters can cast strategic votes
to ensure a preferred outcome, bribery asks if a subcollection of the voters can
be paid to change their vote to ensure a preferred outcome.

It is important that we understand the complexity of these election prob-
lems on votes that allow ties, since in practical settings voters often have ties
between some of the candidates. This is seen in the online preference repository
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PrefLib, which contains several election datasets containing votes with ties,
ranging from political elections to elections created from rating data [23]. Most
of the computational study of election problems for partial votes has assumed
that each voter’s preferences should be extended to a total order (see e.g., the
possible and necessary winner problems [21]). However an agent may view two
options as explicitly equal and it makes sense to view these preferences as votes
with ties, instead of as partial rankings that can be extended.

Election systems are sometimes even explicitly defined for voters with ties.
Both the Kemeny rule [20] and the Schulze rule [27] are defined for votes that
contain ties. Also, there exist variants of the Borda count that are defined for
votes that contain ties [8].

The computational study of the problems of manipulation, control, and
bribery has largely been restricted to elections that contain voters with tie-free
votes. Important recent work by Narodytska and Walsh [25] studies the com-
putational complexity of the manipulation problem for top orders, i.e., votes
where the candidates ranked last are all tied and are otherwise total orders. The
manipulation results in this paper can be seen as an extension of the work by
Narodytska and Walsh. We consider orders that allow a voter to state ties at
each position of his or her preference order, i.e., weak orders. We mention that
in contrast to the work by Narodytska and Walsh [25], we give an example of a
natural case where manipulation becomes hard when given votes with ties, while
it is in P for total orders. Additionally, we are the first to study the complexity of
the standard models of control and bribery for votes that contain ties. However,
we mention here that Baumeister et al. consider a different version of bribery
called extension bribery, for top orders (there called top-truncated votes) [3].

The organization of this paper is as follows. In Sect. 2 we state the formal
definitions and problem statements needed for our results. The results in Sect. 3
are split into three sections, each showing a different behavior of voting with ties.
In Sect. 3.1 we give examples of election systems where the problems of manip-
ulation, bribery, and control increase in complexity from P to NP-complete.
Conversely, in Sect. 3.2 we give examples of election systems where the complex-
ity of manipulation and bribery becomes easier, and state a general result about
the complexity of control. In Sect. 3.3 we solve an open question from Narodyt-
ska and Walsh [25] and give examples of election systems whose manipulation
complexities are unaffected by voters with ties. Additionally, we completely char-
acterize 3-candidate Copelandα coalitional weighted manipulation for rational
and irrational voters with ties. We discuss related work in Sect. 4 and our general
conclusions and open directions in Sect. 5.

2 Preliminaries

An election consists of a finite set of candidates C and a collection of voters
V (also referred to as a preference profile). Each voter in V is specified by
its preference order. We consider voters with varying amounts of ties in their
preferences. A total order is a linear ordering of all of the candidates from most
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to least preferred. A weak order is a transitive, reflexive, and antisymmetric
ordering where the indifference relation (“∼”) is transitive. In general, a weak
order can be viewed as a total order with ties. As usual, we will colloquially
refer to indifference as ties throughout this paper since the indifference relation
specifies the preference for two elements being equal. A top order is a weak order
with all tied candidates ranked last, and a bottom order is a weak order with all
tied candidates ranked first. In Example 1 below we present examples of each of
the orders examined in this paper.

Example 1. Given the candidate set {a, b, c, d}, a > b ∼ c > d is a weak order,
a ∼ b > c > d is a bottom order, a > b > c ∼ d is a top order, and a > b > c > d
is a total order. Notice that every bottom order and every top order is also a
weak order, and that every total order is also a top, bottom, and weak order.

An election system, E , maps an election, i.e., a finite candidate set C and
a collection of voters V , to a set of winners, where the winner set can be any
subset of the candidate set. The voters in an election can sometimes have an
associated weight where a voter with weight w counts as w unweighted voters.

We examine two important families of election systems, the first being scoring
rules. A scoring rule uses a vector of the form ⟨s1, . . . , sm⟩, where m denotes
the number of candidates, to determine each candidate’s score when given a
preference profile. When the preferences are all total orders, a candidate at
position i in the preference order of a voter receives a score of si from that voter.
The candidate(s) with the highest total score win. We consider the following
three scoring rules.

Plurality: with scoring vector ⟨1, 0, . . . , 0⟩.
Borda: with scoring vector ⟨m − 1,m − 2, . . . , 1, 0⟩.
t-Approval: with scoring vector ⟨1, . . . , 1︸ ︷︷ ︸

t

, 0, . . . , 0⟩.

To properly handle voters with ties in their preference orders we define several
natural extensions which generalize the extensions from Baumeister et al. [3] and
Narodytska and Walsh [25].

Write a preference order with ties as G1 > G2 > · · · > Gr where each Gi

is a set of tied candidates. For each set Gi, let ki =
∑i−1

j=1 ∥Gj∥ be the number
of candidates strictly preferred to every candidate in the set. See the caption of
Table 1 for an example.

We now introduce the following scoring-rule extensions, which as stated
above, generalize previously used scoring-rule extensions [3,25]. In Table 1 we
present an example of each of these extensions for Borda.

Min: Each candidate in Gi receives a score of ski+∥Gi∥.
Max: Each candidate in Gi receives a score of ski+1.
Round down: Each candidate in Gi receives a score of sm−r+i.
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Average: Each candidate in Gi receives a score of
∑ki+∥Gi∥

j=ki+1 sj

∥Gi∥
.

Table 1. The score of each candidate for preference order a > b ∼ c > d using Borda
with each of our scoring-rule extensions. We write this order as {a} > {b, c} > {d},
i.e., G1 = {a}, G2 = {b, c}, and G3 = {d}. Note that k1 = 0, k2 = 1, and k3 = 3

Borda score(a) score(b) score(c) score(d)

Min 3 1 1 0

Max 3 2 2 0

Round down 2 1 1 0

Average 3 1.5 1.5 0

The optimistic and pessimistic models from the work by Baumeister et al. [3]
are the same as our max and min extensions respectively, for top orders. All of
the scoring-rule extensions for top orders found in the work by Narodytska and
Walsh [25] can be realized by our definitions above, with our round-down and
average extensions yielding the same scores for top orders as their round-down
and average extensions. With the additional modification that sm = 0 our min
scoring-rule extension yields the same scores for top orders as round up in the
work by Narodytska and Walsh [25].

Notice that plurality using the max scoring-rule extension for bottom orders
is the same as approval voting, where each voter indicates either approval or
disapproval of each candidate and the candidate(s) with the most approvals
win. For example, given the set of candidates {a, b, c, d}, an approval vector that
approves of a and c, and a preference order a ∼ c > b > d yield the same scores
for approval and plurality using max respectively.

In addition to scoring rules, elections can be defined by the pairwise major-
ity elections between the candidates. One important example is Copelandα [7]
(where α is a rational number between 0 and 1), which is scored as follows.
Each candidate receives one point for each pairwise majority election he or she
wins and receives α points for each tie. We also mention that Copeland1 is often
referred to, and will be throughout this paper, as Llull [17]. We apply the defini-
tion of Copelandα to weak orders in the obvious way (as was done for top orders
in [3,25]).

We sometimes look at voters whose preferences need not be rational and we
refer to those voters as “irrational.” This simply means that for every unordered
pair a, b of distinct candidates, the voter has a > b or b > a. For example, a
voter’s preferences could be (a > b, b > c, c > a). We also look at irrational votes
with ties.

When discussing elections defined by pairwise majority elections we some-
times refer to the induced majority graph of a preference profile. A preference
profile V where each voter has preferences over the set of candidates C induces
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the majority graph with a vertex set equal to the candidate set and an edge set
defined as follows. For every a, b ∈ C the graph contains the edge a → b if more
voters have a > b than b > a.

2.1 Election Problems

We examine the complexity of the following election problems.
The coalitional manipulation problem (where a coalition of manipulators

seeks to change the outcome of the election) for weighted voters, first studied by
Conitzer et al. [6], is described below.

Name: E-CWCM
Given: A candidate set C, a collection of nonmanipulative voters V where each

voter has a positive integral weight, a preferred candidate p ∈ C, and a
collection of manipulative voters W .

Question: Is there a way to set the votes of the manipulators such that p is an
E winner of the election (C, V ∪ W )?

Electoral control is the problem of determining if it is possible for an election
organizer with control over the structure of an election, whom we refer to as
the election chair, to ensure that a preferred candidate wins [2]. We formally
define the specific control action of constructive control by adding voters (CCAV)
below. CCAV is one of the most natural cases of electoral control and it models
scenarios such as targeted voter registration drives where voters whose votes will
ensure the goal of the chair are added to the election.

Name: E-CCAV
Given: A candidate set C, a collection of voters V , a collection of unregistered

voters U , a preferred candidate p ∈ C, and an add limit k ∈ IN.
Question: Is there a subcollection of the unregistered voters U ′ ⊆ U such that

∥U ′∥ ≤ k and p is an E winner of the election (C, V ∪ U ′)?

Bribery is the problem of determining if it is possible to change the votes of
a subcollection of the voters, within a certain budget, to ensure that a preferred
candidate wins [9]. The case for unweighted voters is defined below, but we also
consider the case for weighted voters.

Name: E-Bribery
Given: A candidate set C, a collection of voters V , a preferred candidate p ∈ C,

and a bribe limit k ∈ IN.
Question: Is there a way to change the votes of at most k of the voters in V so

that p is an E winner?

2.2 Computational Complexity

We use the following NP-complete problems in our proofs of NP-completeness.
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Name: Exact Cover by 3-Sets
Given: A nonempty set of elements B = {b1, . . . , b3k} and a collection S =

{S1, . . . , Sn} of 3-element subsets of B.
Question: Does there exist a subcollection S ′ of S such that every element of

B occurs in exactly one member of S ′?

Name: Partition
Given: A nonempty set of positive integers k1, . . . , kt such that

∑t
i=1 ki = 2K.

Question: Does there exist a subset A of k1, . . . , kt such that
∑

A = K?1

Some of our results utilize the following variation of Partition, referred to as
Partition′, for which we prove NP-completeness by a reduction from Partition.

Name: Partition′

Given: A nonempty set of positive even integers k1, . . . , kt and a positive even
integer K̂.

Question: Does there exist a partition (A,B,C) of k1, . . . , kt such that
∑

A =∑
B + K̂?

Theorem 1. Partition′ is NP-complete.

Proof. The construction here is similar to the first part of the reduction to a
different version of Partition from Faliszewski et al. [9].

Given k1, . . . , kt such that
∑t

i=1 ki = 2K, corresponding to an instance
of Partition, we construct the following instance k′

1, . . . , k
′
t, ℓ

′
1, . . . , ℓ

′
t, K̂ of

Partition′. Let k′
i = 4i + 4t+1ki, ℓ′

i = 4i, and K̂ = 4t+1K +
∑t

i=1 4
i. (Note

that in Faliszewski et al. [9] “3”s were used, but we use “4”s here so that when
we add a subset of k′

1, . . . , k
′
t, ℓ

′
1, . . . , ℓ

′
t, K̂, we never have carries in the last t+1

digits base 4, and we set the last digit to 0 to ensure that all numbers are even.)
If there exists a partition (A,B,C) of k′

1, . . . , k
′
t, ℓ

′
1, . . . , ℓ

′
t such that

∑
A =∑

B+K̂, then ∀i, 1 ≤ i ≤ t, ⌊(
∑

A)/4i⌋ mod 4 = ⌊(
∑

B+K̂)/4i⌋ mod 4. Note
that ⌊(

∑
A)/4i⌋ mod 4 = ∥A ∩ {k′

i, ℓ
′
i}∥, ⌊(

∑
B)/4i⌋ mod 4 = ∥B ∩ {k′

i, ℓ
′
i}∥,

and ⌊K̂/4i⌋ mod 4 = 1. So, ∥A ∩ {k′
i, ℓ

′
i}∥ = ∥B ∩ {k′

i, ℓ
′
i}∥ + 1. It follows that

exactly one of k′
i or ℓ′

i is in A and neither is in B. Since this is the case for every
i, it follows that B = ∅. Now look at all ki such that k′

i is in A. That set will
add up to K, and so our original Partition instance is a positive instance.

For the converse, it is immediate that a subset D of k1, . . . , kt that adds
up to K can be converted into a solution for our Partition′ instance, namely, by
putting k′

i in A for every ki in D, putting ℓ′
i in A for every ki not in D, letting

B = ∅, and putting all other elements of k′
1, . . . , k

′
t, ℓ

′
1, . . . , ℓ

′
t in C. !

3 Results

3.1 Complexity Goes up

The related work on the complexity of manipulation of top orders [25] did not
find a natural case where manipulation complexity increases when moving from
total orders to top orders. We will show such cases in this section.
1 Here and elsewhere we write

∑
A to denote

∑
a∈A a.
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Single-peakedness is a restriction on the preferences of the voters introduced
by Black [4]. Given a total order A over the candidates, referred to as an axis, a
collection of voters is single-peaked with respect to A if each voter has preferences
that strictly increase to a peak and then strictly decrease, only strictly increase,
or only strictly decrease with respect to A.

For our purposes we consider the model of top order single-peakedness intro-
duced by Lackner [22] where given an axis A, a collection of voters is single-
peaked with respect to A if no voter has preferences that strictly decrease and
then strictly increase with respect to A. Notice that for total orders, if a pref-
erence profile is single-peaked with respect to Black’s model [4] it is also single-
peaked with respect to Lackner’s model [22].

For single-peaked preferences we follow the model of manipulation from
Walsh [28] where the axis is given and both the nonmanipulators and the manip-
ulators all cast votes that are single-peaked with respect to the given axis.
3-candidate Borda CWCM is known to be in P for single-peaked voters [12].

Theorem 2. [12] 3-candidate Borda CWCM for single-peaked total orders is
in P.

We now consider the complexity of 3-candidate Borda CWCM for top orders
that are single-peaked. In all of our reductions the axis is a <A p <A b. Single-
peakedness with respect to this axis allows the following top order votes: a >
p > b, a ∼ p ∼ b, a > p ∼ b, p > a > b, p > b > a, p > a ∼ b, b > p > a,
and b > p ∼ a. It does not allow a > b > p or b > a > p.

Theorem 3. 3-candidate Borda CWCM for single-peaked top orders using max
is NP-complete.

Proof. Given a nonempty set of positive integers k1, . . . , kt such that
∑t

i=1 ki =
2K we construct the following instance of manipulation.

Let the set of candidates be C = {a, b, p}. We have two nonmanipulators
with the following weights and votes.

– One weight 3K nonmanipulator voting a > p ∼ b.
– One weight 3K nonmanipulator voting b > p ∼ a.

From the nonmanipulators, score(p) = 6K, while score(a) and score(b) are both
9K.

Let there be t manipulators, with weights k1, . . . , kt. Without loss of gener-
ality, all of the manipulators put p first. Then p receives a score of 10K overall.
However, a and b can score at most K each from the votes of the manipulators,
for p to be a winner. So the manipulators must split their votes so that a sub-
collection of manipulators with weight K votes p > a > b and a subcollection
with weight K votes p > b > a. Notice that these are the only votes possible to
ensure that p wins and that the manipulators cannot simply all vote p > a ∼ b
since both a and b receive a point from that vote (since we are using max) and
we have no points to spare. !
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The above argument for max does not immediately apply to the other scoring-
rule extensions. In particular, for min the optimal vote for the manipulators is
always to rank p first and to rank the remaining candidates tied and less preferred
than p (as in Proposition 3 of Narodytska and Walsh [25]). So that case is in P,
with an optimal manipulator vote of p > a ∼ b.

It is not hard to modify the proof to show that the reduction of the proof of
Theorem 3 also works for the round-down case.

Theorem 4. 3-candidate Borda CWCM for single-peaked top orders using
round down is NP-complete.

The average scoring-rule extension case is more complicated since it is less
close to Partition than the previous cases. We will still be able to show NP-
completeness, but we have to reduce from the special, restricted version of Par-
tition that we defined previously in Sect. 2.2 as Partition′.2

Theorem 5. 3-candidate Borda CWCM for single-peaked top orders using aver-
age is NP-complete.

Proof. Let k1, . . . , kt, K̂ be an instance of Partition′. We are asking whether
there exists a partition (A,B,C) of k1, . . . , kt such that

∑
A =

∑
B+ K̂. Recall

that all numbers involved are even. Let k1, . . . , kt sum to 2K. Without loss of
generality, assume that K̂ ≤ 2K.

Let the candidates C = {a, b, p}. We have two nonmanipulators with the
following weights and votes.

– One weight 6K + K̂ nonmanipulator voting a > p ∼ b.
– One weight 6K − K̂ nonmanipulator voting b > p ∼ a.

From the nonmanipulators, score(p) is 6K, score(a) + score(b) = 30K and
score(a) − score(b) = 3K̂.

Let there be t manipulators, with weights 3k1, . . . , 3kt.
First suppose there exists a partition (A,B,C) of k1, . . . , kt such that

∑
A =∑

B + K̂. For every ki ∈ A, let the weight 3ki manipulator vote p > b > a. For
every ki ∈ B, let the weight 3ki manipulator vote p > a > b. For every ki ∈ C, let
the weight 3ki manipulator vote p > a ∼ b. Notice that after this manipulation
that score(p) = 18K, score(a) = score(b), and score(a) + score(b) = 30K + 6K.
It follows that score(p) = score(a) = score(b) = 18K.

For the converse, suppose that p can be made a winner. Without loss of
generality, assume that p is ranked uniquely first by all manipulators. Then
score(p) = score(a) = score(b) = 18K. Let A′ be the set of manipulator weights
that vote p > b > a, let B′ be the set of manipulator weights that vote p >
a > b, and let C ′ be the set of manipulator weights that vote p > a ∼ b. No
2 A similar situation occurred in the proof of Proposition 5 in Narodytska and
Walsh [25], where a (very different) specialized version of Subset Sum was con-
structed to prove that 3-candidate Borda CWCM (in the non-single-peaked case)
for top orders using average remained NP-complete.
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other votes are possible. Let A = {ki | 3ki ∈ A′}, B = {ki | 3ki ∈ B′}, and
C = {ki | 3ki ∈ C ′}. Therefore (A,B,C) corresponds to a partition of k1, . . . , kt.
Note that

∑
A =

∑
B + K̂. !

We now consider cases where the complexity of control can increase when
moving from total order votes to votes with ties. We examine the complexity of
CCAV, which is one of the most natural models of control and known to be in
P for plurality for total orders [2].

Theorem 6. [2] Plurality CCAV for total orders is in P.

However below we show two cases where CCAV for plurality is NP-complete for
bottom orders and weak orders.

As mentioned in the Preliminaries, plurality using max for bottom orders is
the same as approval voting. So the theorem below immediately follows from the
proof of Theorem 4.43 from Hemaspaandra et al. [19].

Theorem 7. Plurality CCAV for bottom orders and weak orders using max is
NP-complete.

We now show that the case of plurality for bottom orders and weak orders
using average is NP-complete.

Theorem 8. Plurality CCAV for bottom orders and weak orders using average
is NP-complete.

Proof. Let B = {b1, . . . , b3k} and a collection S = {S1, . . . Sn} of 3-element sub-
sets of B be an instance of Exact Cover by 3-Sets, where each Sj = {bj1 , bj2 , bj3}.
Without loss of generality let k be divisible by 4 and let ℓ = 3k/4. We construct
the following instance of control by adding voters.

Let the candidates C = {p}∪B. Let the addition limit be k. Let the collection
of registered voters consist of the following (3k2 + 9k)/4 + 1 voters. (When
“· · · ” appears at the end of a vote the remaining candidates from C are ranked
lexicographically. For example, given the candidate set {a, b, c, d}, the vote b >
· · · denotes the vote b > a > c > d.)

– For each i, 1 ≤ i ≤ ℓ, k + 3 voters voting bi ∼ bi+ℓ ∼ bi+2ℓ ∼ bi+3ℓ > · · · .
– One voter voting p > · · · .

Let the collection of unregistered voters consist of the following n voters.

– For each Sj ∈ S, one voter voting p ∼ bj1 ∼ bj2 ∼ bj3 > · · · .

Notice that from the registered voters, the score of each bi candidate is (k−1)/4
greater than the score of p. Thus the chair must add voters from the collection of
unregistered voters so that no bi candidate receives more than 1/4 more points,
while p must gain k/4 points. Therefore the chair must add the voters that
correspond to an exact cover. !
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We now present a case where the complexity of bribery goes from P for total
orders to NP-complete for votes with ties.

Theorem 9. [9] Unweighted bribery for plurality for total orders is in P.

The proof that bribery for plurality for bottom orders and weak order using
max is NP-complete immediately follows from the proof of Theorem 4.2 from
Faliszewski et al. [9], which showed bribery for approval to be NP-complete.

Theorem 10. Unweighted bribery for plurality for bottom orders and weak
orders using max is NP-complete.

3.2 Complexity Goes down

Narodytska and Walsh [25] show that the complexity of coalitional manipulation
can go down when moving from total orders to top orders. In particular, they
show that the complexity of coalitional manipulation (weighted or unweighted)
for Borda goes from NP-complete to P for top orders using round-up. This is
because in round-up an optimal manipulator vote is to put p first and have all
other candidates tied for last.

In contrast, notice that the complexity of a (standard) control action cannot
decrease when more lenient votes are allowed. This is because the votes that
create hard instances of control are still able to be cast when more general votes
are possible. The election chair is not able to directly change votes, except in a
somewhat restricted way in candidate control cases, but it is clear to see how
this does not affect the statement below.

Observation 11. If a (standard) control problem is hard for a type of vote with
ties, it remains hard for votes that allow more ties.

What about bribery? Bribery can be viewed as a two-phase action consisting
of control by deleting voters followed by manipulation. Hardness for a bribery
problem is typically caused by hardness of the corresponding deleting voters
problem or the corresponding manipulation problem. If the deleting voters prob-
lem is hard, this problem remains hard for votes that allow ties, and it is likely
that the bribery problem remains hard as well. Our best chance of finding a
bribery problem that is hard for total orders and easy for votes with ties is a
problem whose manipulation problem is hard, but whose deleting voters problem
is easy. Such problems exist, e.g., all weighted m-candidate t-approval systems
except plurality and triviality.3

Theorem 12. [9] Weighted bribery for m-candidate t-approval for all t ≥ 2 and
m > t is NP-complete.

For m-candidate t-approval elections (except plurality and triviality) the cor-
responding weighted manipulation problem was shown to be NP-complete by
Hemaspaandra and Hemaspaandra [18] and the corresponding deleting voters
problem was shown to be in P by Faliszewski et al. [10].
3 By triviality we mean a scoring rule with a scoring vector that gives each candidate
the same score.
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Theorem 13. Weighted bribery for m-candidate t-approval for weak orders and
for top orders using min is in P.

Proof sketch. To perform an optimal bribery, we cannot simply perform an
optimal deleting voter action followed by an optimal manipulation action. For
example, if the score of b is already at most the score of p, it does not make
sense to delete a voter with vote b > p ∼ a. But in the case of bribery, we would
change this voter to p > a ∼ b, which could be advantageous.

However, the weighted constructive control by deleting voters (WCCDV)
algorithm from [10] still basically works. Since m is constant, there are only a
constant number of different votes possible. And we can assume without loss
of generality that we bribe only the heaviest voters of each vote-type and that
each bribed voter is bribed to put p first and have all other candidates tied for
last. In order to find out if there exists a successful bribery of k voters, we look
at all the ways we can distribute this k among the different types of votes. We
then manipulate the heaviest voters of each type to put p first and have all other
candidates tied for last, and see if that makes p a winner. !

3.3 Complexity Remains the Same

Narodytska and Walsh [25] show that 4-candidate Copeland0.5 CWCM remains
NP-complete for top orders. They conjecture that this is also the case for 3
candidates and point out that the reduction that shows this for total orders
from Faliszewski et al. [13] won’t work. We will prove their conjecture, with a
reduction similar to the proof of Theorem 5.4

Theorem 14. 3-candidate Copelandα CWCM remains NP-complete for top
orders, bottom orders, and weak orders, for all rational α ∈ [0, 1) in the
nonunique winner case (our standard model).

Proof. Let k1, . . . , kt and K̂ be an instance of Partition′, which asks whether
there exists a partition (A,B,C) of k1, . . . , kt such that

∑
A =

∑
B + K̂.

Let k1, . . . , kt sum to 2K and without loss of generality assume that K̂ ≤ 2K.
We now construct an instance of CWCM. Let the candidate set C = {a, b, p}
and let the preferred candidate be p. Let there be two nonmanipulators with the
following weights and votes.

– One weight K + K̂/2 nonmanipulator voting a > b > p.
– One weight K − K̂/2 nonmanipulator voting b > a > p.

From the votes of the nonmanipulators, score(a) = 2, score(b) = 1, and
score(p) = 0. In the induced majority graph, there is the edge a → b with
weight K̂, the edge a → p with weight 2K, and the edge b → p with weight 2K.
Let there be t manipulators with, weights k1, . . . , kt.
4 Menon and Larson independently proved the top order case of the following theo-
rem [24].
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Suppose that there exists a partition of k1, . . . , kt into (A,B,C) such that∑
A =

∑
B + K̂. Then for each ki ∈ A, have the manipulator with weight

ki vote p > b > a, for each ki ∈ B, have the manipulator with weight ki
vote p > a > b, and for each ki ∈ C have the manipulator with weight ki
vote p > a ∼ b. From the votes of the nonmanipulators and manipulators,
score(a) = score(b) = score(p) = 2α.

For the other direction, suppose that p can be made a winner. When all of
the manipulators put p first then score(p) = 2α (the highest score that p can
achieve). Since α < 1, the manipulators must have voted such that a and b tie.
This means that a subcollection of the manipulators with weight K voted p >
b > a, a subcollection with weight K − K̂ voted p > a > b, and a subcollection
with weight K̂ voted p > a ∼ b. No other votes would cause b and a to tie.
Notice that the weights of the manipulators in the three different subcollections
form a partition (A,B,C) of k1, . . . , kt such that

∑
A =

∑
B + K̂. !

3-candidate Copelandα CWCM is unusual in that the complexity can be
different if we look at the unique winner case instead of the nonunique winner
case (our standard model). We can prove that the only 3-candidate Copeland
CWCM case that is hard for the unique winner model remains hard using a very
similar approach.

Theorem 15. 3-candidate Copeland0 CWCM remains NP-complete for top
orders, bottom orders, and weak orders, in the unique winner case.

Proof. Let k1, . . . , kt and K̂ be an instance of Partition′, which asks whether
there exists a partition (A,B,C) of k1, . . . , kt such that

∑
A =

∑
B + K̂.

Let k1, . . . kt sum to 2K and without loss of generality assume that K̂ ≤ 2K.
We now construct an instance of CWCM. Let the candidate set C = {a, b, p}.
Let the preferred candidate be p ∈ C. Let there be two nonmanipulators with
the following weights and votes.

– One weight K + K̂/2 nonmanipulator voting a > p > b.
– One weight K − K̂/2 nonmanipulator voting b > a > p.

From the votes of the nonmanipulators score(a) = 2, score(b) = 0, and score(p) =
1. The induced majority graph contains the edge a → b with weight K̂, the edge
a → p with weight 2K, and the edge p → b with weight K̂. Let there be t
manipulators, with weights k1, . . . , kt.

Suppose that there exists a partition of k1, . . . , kt into (A,B,C) such that∑
A =

∑
B+K̂. Then for each ki ∈ A have the manipulator with weight ki vote

p > b > a, for each ki ∈ B have the manipulator with weight ki vote p > a > b,
and for each ki ∈ C have the manipulator with weight ki vote p > a ∼ b.
From the votes of the nonmanipulators and the manipulators score(p) = 1 and
score(a) = score(b) = 0.

For the other direction, suppose that p can be made a unique winner. When
all of the manipulators put p first then score(p) = 1. So the manipulators must
have voted so that a and b tie, since otherwise either a or b would tie with p and
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p would not be a unique winner. Therefore a subcollection of the manipulators
with weight K voted p > b > a, a subcollection with weight K − K̂ voted
p > a > b, and a subcollection with weight K̂ voted p > a ∼ b. No other votes
would cause a and b to tie. !
Theorem 16. 3-candidate Copelandα CWCM remains in P for top orders, bot-
tom orders, and weak orders, for α = 1 for the nonunique winner case and for
all rational α ∈ (0, 1] in the unique winner case.

The proof of this theorem follows using the same arguments as the proof of the
case without ties from Faliszewski et al. [13].

Tournament Result. We now state a general theorem on two-voter tourna-
ments for votes with ties. See Brandt et al. [5] for related work on tournaments
constructed from a fixed number of voters with total orders.

Theorem 17. A majority graph can be induced by two weak orders if and only
if it can be induced by two total orders.

Proof sketch. Given two weak orders v1 and v2 that describe preferences over
a candidate set C, we construct two total orders, v′

1 and v′
2 iteratively as follows.

For each pair of candidates a, b ∈ C and i ∈ {1, 2}, if a > b in vi then set
a > b in v′

i.
For each pair of candidates a, b ∈ C, if a > b in v1 (v2) and a ∼ b in v2

(v1) then the majority graph induced by v1 and v2 contains the edge a → b. To
ensure that the majority graph induced by v′

1 and v′
2 contains the edge a → b

we must set a > b in v′
2 (v′

1).
After performing the above steps there may still be a set of candidates C ′ ⊆ C

such that v1 and v2 are indifferent between each pair of candidates in C ′. For
each pair of candidates a, b ∈ C ′, a ∼ b in v1 and v2, which implies the majority
graph does not contain and edge between a and b. To ensure that majority
graph induced by v′

1 and v′
2 does not contain an edge between a and b, without

loss of generality set v′
1 to strictly prefer the lexicographically smaller to the

lexicographically larger candidate and the reverse in v′
2.

The process described above constructs two orders v′
1 and v′

2 and ensures
that the majority graph induced by v1 and v2 is the same as the majority graph
induced by v′

1 and v′
2. Since for each pair of candidates a, b ∈ C and i ∈ {1, 2}

we consider each possible case where a ∼ b is in vi and set either a > b or b > a
in the corresponding order v′

i, it is clear that v′
1 and v′

2 are total orders. !
Observe that as a consequence of Theorem 17 we get a transfer of NP-

hardness from total orders to weak orders for two manipulators when the
result depends only on the induced majority graph. The proofs for Copelandα

unweighted manipulation for two manipulators for all rational α for total orders
depend only on the induced majority graph [13,14], so we can state the following
corollary to Theorem 17.

Corollary 18. Copelandα unweighted manipulation for two manipulators for
all rational α ̸= 0.5 for weak orders is NP-complete.
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Irrational Voter Copeland Results. As mentioned in the preliminaries,
another way to give more flexibility to voters is to let the voters be irrational. A
voter with irrational preferences can state preferences that are not necessarily
transitive and as mentioned in Faliszewski et al. [11] a voter is likely to posses
preferences that are not transitive when making a decision based on multiple
criteria.

Additionally, the preferences of voters can include ties as well as irrationality.
When voters are able to state preferences that can contain irrationality and ties
they can represent all possible pairwise preferences that they may have over all
of the candidates.

It is known that unweighted Copelandα manipulation is NP-complete for
total orders for all rational α except 0.5 [13,14]. For irrational voters, this prob-
lem is in P for α = 0, 0.5, and 1, and NP-complete for all other α [14]. Weighted
manipulation for Copelandα has not been studied for irrational voters. We will
do so here.

Theorem 19. 3-candidate Copelandα CWCM remains in P for irrational voters
with or without ties, for α = 1 for the nonunique winner case and for all rational
α ∈ (0, 1] in the unique winner case.

Theorem 20. 3-candidate Copelandα CWCM remains NP-complete for irra-
tional voters with or without ties, for α = 0 in the unique winner case and for
all rational α ∈ [0, 1) in the nonunique winner case.

The proofs of the above two theorems follow from the arguments in the proofs
of the corresponding rational cases, i.e., the proofs of Theorem 4.1 and 4.2
from Faliszewski et al. [13] for the case of voters without ties and the proofs of
Theorems 14, 15, and 16 above for the case of voters with ties.

When α = 1, also known as Llull, interesting things happen. It is known that
4-candidate Llull CWCM is in P for the unique and nonunique winner cases [15].
For larger fixed numbers of candidates, this is open. Though it is known that
unweighted manipulation for Llull (with an unbounded number of candidates)
is NP-complete in the nonunique winner case [14]. In contrast, we will show now
that for irrational voters, all these problems are in P.

Theorem 21. Llull CWCM is in P for irrational voters with or without ties,
in the nonunique winner case and in the unique winner case.

Proof. Given a set of candidates C, a collection of voters V , k manipulators,
and a preferred candidate p ∈ C, the preferences of the manipulators will always
contain p > a for all candidates a ̸= p. This determines the score of p. In
addition, let the initial preferences of the manipulators be a > b for each pair
of candidates a, b ∈ C − {p} such that a defeats b in V or such that a ties b in
V and a is lexicographically smaller than b. Note that, if k > 0, there are no
pairwise ties in the election with the manipulators set in this way and that the
manipulators all have strict preferences between every pair of candidates (i.e.,
no ties in their preferences). For every a ̸= p, let score0(a) be the score of a with
the manipulators set as above.
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Construct the following flow network. The nodes are: a source s, a sink t, and
all candidates other than p. For every a ∈ C − {p}, add an edge with capacity
score0(a) from s to a and add an edge with capacity score(p) from a to t. For
every a, b ∈ C −{p}, add an edge from candidate a to candidate b with capacity
1 if, when all manipulators set b > a, the score of a decreases by 1 (and the score
of b increases by 1).

If there is manipulation such that p is a winner, then for every candidate
a ∈ C − {p}, score(a) ≤ score(p) so there is a network flow that saturates all
edges that go out from s.

If there is a network flow that saturates all edges that go out from s then for
every a, b ∈ C − {p} such that there is a unit of flow from a to b, change a > b
to b > a in all manipulators.

This construction can be adapted to the unique winner case by letting the
capacity of the edge from a to t be score(p) − 1 instead of score(p). !

4 Related Work

The recent work by Narodytska and Walsh [25] studied the complexity of manip-
ulation for top orders and is very influential to our computational study of more
general votes with ties. Baumeister et al. [3] and Narodytska and Walsh [25]
studied several extensions for election systems for top orders, which we further
extend for weak orders.

Most of the related work in the computational study of election problems
assumes that the partial or tied preferences of the voters must be extended to
total orders. We mention the important work on partial orders by Konczak and
Lang [21] that introduces the possible and necessary winner problems. Given a
preference profile of partial votes, a possible winner is a candidate that wins in
at least one extension of the votes to total orders, while a necessary winner wins
in every extension [21].

Baumeister et al. [3] also look at the possible winner problem and in their case
they examine the problem given different types of incomplete votes, i.e., top trun-
cated, bottom truncated, and top and bottom truncated. Baumeister et al. also
introduced the problem of extension bribery, where given voters with preferences
that are top truncated, voters are paid to extend their vote to ensure that a pre-
ferred candidate wins [3].We do not consider the problem of extension bribery, but
instead we use the standard model of bribery introduced by Faliszewski et al. [9].
In this model the briber can set the entire preferences of a subcollection of voters
to ensure that a preferred candidate wins [9].

5 Conclusions and Future Work

We examined the computational complexity of the three most commonly studied
manipulative attacks on elections when voting with ties. We found a natural case
for manipulation where the complexity increases for voters with ties, whereas it
is easy for total orders. For bribery we found examples where the complexity
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increases and where it decreases. We examined the complexity of Copelandα

elections for voters with ties and even irrational votes with and without ties. It
would be interesting to see how the complexity of other election problems are
affected by voters with ties, specifically weak orders, which we consider to be a
natural model for preferences in practical settings.
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